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Abstract. Nuclei segmentation is a fundamental but challenging task
in the quantitative analysis of histopathology images. Although fully-
supervised deep learning-based methods have made significant progress,
a large number of labeled images are required to achieve great segmenta-
tion performance. Considering that manually labeling all nuclei instances
for a dataset is inefficient, obtaining a large-scale human-annotated
dataset is time-consuming and labor-intensive. Therefore, augmenting a
dataset with only a few labeled images to improve the segmentation per-
formance is of significant research and application value. In this paper,
we introduce the first diffusion-based augmentation method for nuclei
segmentation. The idea is to synthesize a large number of labeled images
to facilitate training the segmentation model. To achieve this, we propose
a two-step strategy. In the first step, we train an unconditional diffusion
model to synthesize the Nuclei Structure that is defined as the repre-
sentation of pixel-level semantic and distance transform. Each synthetic
nuclei structure will serve as a constraint on histopathology image syn-
thesis and is further post-processed to be an instance map. In the second
step, we train a conditioned diffusion model to synthesize histopathology
images based on nuclei structures. The synthetic histopathology images
paired with synthetic instance maps will be added to the real dataset for
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training the segmentation model. The experimental results show that by
augmenting 10% labeled real dataset with synthetic samples, one can
achieve comparable segmentation results with the fully-supervised base-
line.

Keywords: Data augmentation · Nuclei segmentation · Diffusion
models

Fig. 1. The illustration of diffusion model in the context of nuclei structure.

1 Introduction

Nuclei segmentation is a fundamental step in medical image analysis. Accu-
rately segmenting nuclei helps analyze histopathology images to facilitate clin-
ical diagnosis and prognosis. In recent years, many deep learning based nuclei
segmentation methods have been proposed [5,18,19,23]. Most of these methods
are fully-supervised so the great segmentation performance usually relies on a
large number of labeled images. However, manually labeling the pixels belonging
to all nucleus boundaries in an image is time-consuming and requires domain
knowledge. In practice, it is hard to obtain an amount of histopathology images
with dense pixel-wise annotations but feasible to collect a few labeled images.
A question is raised naturally: can we expand the training dataset with a small
proportion of images labeled to reach or even exceed the segmentation perfor-
mance of the fully-supervised baseline? Intuitively, since the labeled images are
samples from the population of histopathology images, if the underlying distri-
bution of histopathology images is learned, one can generate infinite images and
their pixel-level labels to augment the original dataset. Therefore, it is demanded
to develop a tool that is capable of learning distributions and generating new
paired samples for segmentation.

Generative adversarial network (GANs) [2,4,12,16,20] have been widely used
in data augmentation [11,22,27,31]. Specially, a newly proposed GAN-based
method can synthesize labeled histopathology image for nuclei segmentation
[21]. While GANs are able to generate high quality images, they are known
for unstable training and lack of diversity in generation due to the adversarial
training strategy. Recently, diffusion models represented by denoising diffusion
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probabilistic model (DDPM) [8] tend to overshadow GANs. Due to the theo-
retical basis and impressive performance of diffusion models, they were soon
applied to a variety of vision tasks, such as inpainting, superresolution [30],
text-to-image translation, anomaly detection and segmentation [1,9,24,26]. As
likelihood-based models, diffusion models do not require adversarial training and
outperform GANs on the diversity of generated images [3], which are naturally
more suitable for data augmentation. In this paper, we propose a novel diffusion-
based augmentation framework for nuclei segmentation. The proposed method
consists of two steps: unconditional nuclei structure synthesis and conditional
histopathology image synthesis. We develop an unconditional diffusion model
and a nuclei-structure conditioned diffusion model (Fig. 1) for the first and sec-
ond step, respectively. On the training stage, we train the unconditional diffusion
model using nuclei structures calculated from instance maps and the conditional
diffusion model using paired images and nuclei structures. On the testing stage,
the nuclei structures and the corresponding images are generated successively
by the two models. As far as our knowledge, we are the first to apply diffusion
models on histopathology image augmentation for nuclei segmentation.

Our contributions are: (1) a diffusion-based data augmentation framework
that can generate histopathology images and their segmentation labels from
scratch; (2) an unconditional nuclei structure synthesis model and a condi-
tional histopathology image synthesis model; (3) experiments show that with
our method, by augmenting only 10% labeled training data, one can obtain
segmentation results comparable to the fully-supervised baseline.

2 Method

Our goal is to augment a dataset containing a limited number of labeled images
with more samples to improve the segmentation performance. To increase the
diversity of labeled images, it is preferred to synthesize both images and their
corresponding instance maps. We propose a two-step strategy for generating new
labeled images. Both steps are based on diffusion models. The overview of the
proposed framework is shown in Fig. 2. In this section, we introduce the two
steps in detail.

2.1 Unconditional Nuclei Structure Synthesis

In the first step, we aim to synthesize more instance maps. Since it is not viable
to directly generate an instance map, we instead choose to generate its surrogate
– nuclei structure, which is defined as the concatenation of pixel-level semantic
and distance transform. Pixel-level semantic is a binary map where 1 or 0 indi-
cates whether a pixel belongs to a nucleus or not. The distance transform consists
of the horizontal and the vertical distance transform, which are obtained by cal-
culating the normalized distance of each pixel in a nucleus to the horizontal and
the vertical line passing through the nucleus center [5]. Clearly, the nuclei struc-
ture is a 3-channel map with the same size as the image. As nuclei instances
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can be identified from the nuclei structure, we can easily construct the corre-
sponding instance map by performance marker-controlled watershed algorithm
on the nuclei structure [29]. Therefore, the problem of synthesizing instance map
transfers to synthesizing nuclei structures. We deploy an unconditional diffusion
model to learn the distribution of nuclei structures.

Denote a true nuclei structure as y0, which is sampled from real distribution
q(y). To maximize data likelihood, the diffusion model defines a forward and
a reverse process. In the forward process, small amount of Gaussian noise are
successively added to the sample y0 in T steps by:

yt =
√

1 − βtyt−1 +
√

βtεt−1, t = 1, ..., T, (1)

where εt ∼ N (0, I) and {βt ∈ (0, 1)}T
t=1 is a variance schedule. The resulting

sequence {y0, ...,yT } forms a Markov chain. The conditional probability of yt

given yt−1 follows a Gaussian distribution:

q(yt|yt−1) = N (yt;
√

1 − βtyt−1, βtI). (2)

In the reverse process, since q(yt−1|yt) cannot be easily estimated, a
model pθ(yt−1|yt) (typically a neural network) will be learned to approximate
q(yt−1|yt). Specifically, pθ(yt−1|yt) is a also Gaussian distribution:

pθ(yt−1|yt) = N (yt−1;μθ(yt, t),Σθ(yt, t)), (3)

The objective function is the variational lower bound loss: L = LT +LT−1 +
... + L0, where every term except L0 is a KL divergence between two Gaussian
distributions. In practice, a simplified version of Lt is commonly used [8]:

Lsimple
t = Ey0,εt‖εt − εθ(

√
ᾱtyt +

√
1 − ᾱtεt, t)‖2, (4)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. Clearly, the optimization objective of the
neural network parameterized by θ is to predict the Gaussian noise εt from the
input yt at time t.

After the network is trained, one can progressively denoise a random point
from N (0, I) by T steps to produce a new sample:

yt−1 =
1√
αt

(yt − 1 − αt√
1 − ᾱt

εθ(yt, t)) + σtz, z ∼ N (0, I) (5)

For synthesizing nuclei structures, we train an unconditional DDPM on nuclei
structures calculated from real instance maps. Following [8], the network of this
unconditional DDPM has a U-Net architecture.

2.2 Conditional Histopathology Image Synthesis

In the second step, we synthesize histopathology images conditioned on nuclei
structures. Without any constraint, an unconditional diffusion model will gener-
ate diverse samples. There are usually two ways to synthesize images constrained
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Fig. 2. The proposed diffusion-based data augmentation framework. We first generate
a nuclei structure with an unconditional diffusion model, and then generate images
conditioned on the nuclei structure. The instance map from the nuclei structure is
paired with the synthetic image to forms a new sample.

by certain conditions: classifier-guided diffusion [3] and classifier-free guidance
[10]. Since classifier-guided diffusion requires training a separate classifier which
is an extra cost, we choose classifier-free guidance to control sampling process.

Let εθ(xt, t) and εθ(xt, t,y) be the noise predictor of unconditional diffusion
model pθ(x|y) and conditional diffusion model pθ(x), respectively. The two mod-
els can be learned with one neural network. Specifically, pθ(x|y) is trained on
paired data (x0,y0) and pθ(x) can be trained by randomly discarding y (i.e.
y = ∅) with a certain drop rate ∈ (0, 1) so that the model learns uncondi-
tional and conditional generation simultaneously. The noise predictor ε′

θ(xt, t, y)
of classifier-free guidance is a combination of the above two predictors:

ε′
θ(xt, t, y) = (w + 1)εθ(xt, t, y) − wεθ(xt, t), (6)

where εθ(xt, t) = εθ(xt, t,y = ∅), w is a scalar controlling the strength of
classifier-free guidance.

Unlike the network of unconditional nuclei structure synthesis which inputs
the noisy nuclei structure yt and outputs the prediction of εt(yt, t), the network
of conditional nuclei image synthesis takes the noisy nuclei image xt and the
corresponding nuclei structure y as inputs and the prediction of εt(xt, t,y) as
output. Therefore, the conditional network should be equipped with the ability
to well align the paired histopathology image and nuclei structure. Since nuclei
structures and histopathology images have different feature spaces, simply con-
catenating or passing them through a cross-attention module [7,15,17] before
entering the U-Net will degrade image fidelity and yield unclear correspondence
between synthetic nuclei image and its nuclei structure. Inspired by [28], we
embed information of the nuclei structure into feature maps of nuclei image
by the spatially-adaptive normalization (SPADE) module [25]. In other words,
the spatial and morphological information of nuclei modulates the normalized
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feature maps such that the nuclei are generated in the right places while the
background is left to be created freely. We include the SPADE module in differ-
ent levels of the network to utilize the multi-scale information of nuclei structure.
The network of conditional nuclei image synthesis also applies a U-Net archi-
tecture. The encoder is a stack of Resblocks and attention blocks (AttnBlocks).
Each Resblock consists of 2 GroupNorm-SiLU-Conv and each Attnblocks cal-
culates the self-attention of the input feature map. The decoder is a stack of
CondResBlocks and attention blocks. Each CondResBlock consists of SPADE-
SiLU-Conv which takes both feature map and nuclei structure as inputs.

3 Experiments and Results

3.1 Implementation Details

Datasets. We conduct experiments on two datasets: MoNuSeg [13] and Kumar
[14]. The MoNuSeg dataset has 44 labeled images of size 1000 × 1000, 30 for
training and 14 for testing. The Kumar dataset consists of 30 1000×1000 labeled
images from seven organs of The Cancer Genome Atlas (TCGA) database. The
dataset is splited into 16 training images and 14 testing images.
Paired Sample Synthesis. To validate the effectiveness of the proposed aug-
mentation method, we create 4 subsets of each training dataset with 10%, 20%,
50% and 100% nuclei instance labels. Precisely, we first crop all images of each
dataset into 256 × 256 patches with stride 128, then obtain the features of all
patches with pretrained ResNet50 [6] and cluster the patches into 6 classes by K-
means. Patches close to the cluster centers are selected. The encoder and decoder
of the two networks have 6 layers with channels 256, 256, 512, 512, 1024 and
1024. For the unconditional nuclei structure synthesis network, each layer of the
encoder and decoder has 2 ResBlocks and last 3 layers contain AttnBlocks. The
network is trained using the AdamW optimizer with a learning rate of 10−4 and
a batch size of 4. For the conditional histopathology image synthesis network,
each layer of the encoder and the decoder has 2 ResBlocks and 2 CondResBlocks
respectively, and last 3 layers contain AttnBlocks. The network is first trained
in a fully-conditional style (drop rate = 0) and then finetuned in a classifier free
style (drop rate = 0.2). We use AdamW optimizer with learning rates of 10−4

and 2 × 10−5 for the two training stages, respectively. The batch size is set to
be 1. For the diffusion process of both steps, we set the total diffusion timestep
T to 1000 with a linear variance schedule {β1, ..., βT } following [8].

For MoNuSeg dataset, we generate 512/512/512/1024 synthetic samples for
10%/20%/50%/100% labeled subsets; for Kumar dataset, 256/256/256/512 syn-
thetic samples are generated for 10%/20%/50%/100% labeled subsets. The syn-
thetic nuclei structures are generate by the nuclei structure synthesis network
and the corresponding images are generated by the histopathology image synthe-
sis network with the classifier-free guidance scale w = 2. Each follows the reverse
diffusion process with 1000 timesteps [8]. We then obtain the augmented subsets
by adding the synthetic paired images to the corresponding labeled subsets.
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Nuclei segmentation. The effectiveness of the proposed augmentation method
can be evaluated by comparing the segmentation performance of using the four
labeled subsets and using the corresponding augmented subsets to train a seg-
mentation model. We choose to train two nuclei segmentation models – Hover-
Net [5] and PFF-Net [18]. To quantify the segmentation performance, we use
two metrics: Dice coefficient and Aggregated Jaccard Index (AJI) [14].

Fig. 3. Visualization of synthetic samples. The first and second row show selected
patches and corresponding nuclei structures from the 10% labeled subset of MoNuSeg
dataset. The third and fourth row show selected synthetic images and corresponding
nuclei with similar style as the real one in the same column.

3.2 Effectiveness of the Proposed Data Augmentation Method

Fig. 3 shows the synthetic samples from the models trained on the subset with
10% labeled images. We have the following observations. First, the synthetic
samples look realistic: the patterns of synthetic nuclei structures and textures
of synthetic images are close to the real samples. Second, due to the conditional
mechanism of the image synthesis network and the classifier-guidance sampling,
the synthetic images are well aligned with the corresponding nuclei structures,
which is the prerequisite to be additional segmentation training samples. Third,
the synthetic nuclei structures and images show great diversity: the synthetic
samples resemble different styles of the real ones but with apparent differences.

We then train segmentation models on the four labeled subsets of MoNuSeg
and Kumar dataset and corresponding augmented subsets with both real and
synthetic labeled images. With a specific labeling proportion, say 10%, we name
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the original subset as 10% labeled subset and the augmented on as 10% aug-
mented subset. Specially, 100% labeled subset is the fully-supervised baseline.
Table 1 show the segmentation performances with Hover-Net. For MoNuSeg
dataset, it is clear that the segmentation metrics drop with fewer labeled images.
For example, with only 10% labeled images, Dice and AJI reduce by 2.4% and
3.1%, respectively. However, by augmenting the 10% labeled subset, Dice and
AJI exceed the fully-supervised baseline by 0.9% and 1.3%. For the 20% and
50% case, the two metrics obtained by augmented subset are of the same level
as using all labeled images. Note that the metrics of 10% augmented subset
are higher than those of 20% augmented subset, which might be attributed to
the indetermination of the diffusion model training and sampling. Interestingly,
augmenting the full dataset also helps: Dice increases by 1.3% and AJI increases
by 1.6% compared with the original full dataset. Therefore, the proposed aug-
mentation method consistently improves segmentation performance of different
labeling proportion. For Kumar dataset, by augmenting 10% labeled subset,
AJI increases to a level comparable with that using 100% labeled images; by
augmenting 20% and 50% labeled subset, AJIs exceed the fully-supervised base-
line. These results demonstrate the effectiveness of the proposed augmentation
method that we can achieve the same or higher level segmentation performance
of the fully-supervised baseline by augmenting a dataset with a small amount of
labeled images.

Generalization of the Proposed Data Augmentation. Moreover, we have
similar observations when using PFF-Net as the segmentation model. Table 2
shows the segmentation results with PFF-Net. For both MoNuSeg and Kumar
datasets, all the four labeling proportions metrics notably improve with synthetic
samples. This indicates the generalization of our proposed augmentation method.

Table 1. Effectiveness of the proposed data augmentation method with Hover-Net.

Training data MoNuSeg Kumar

Dice AJI Dice AJI

10% labeled 0.7969 0.6344 0.8040 0.5939

10% augmented 0.8291 0.6785 0.8049 0.6161

20% labeled 0.8118 0.6501 0.8078 0.6098

20% augmented 0.8219 0.6657 0.8192 0.6255

50% labeled 0.8182 0.6603 0.8175 0.6201

50% augmented 0.8291 0.6764 0.8158 0.6307

100% labeled 0.8206 0.6652 0.8150 0.6183

100% augmented 0.8336 0.6810 0.8210 0.6301
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Table 2. Generalization of the proposed data augmentation method with PFF-Net.

Training data MoNuSeg Kumar

Dice AJI Dice AJI

10% labeled 0.7489 0.5290 0.7685 0.5965

10% augmented 0.7764 0.5618 0.8051 0.6458

20% labeled 0.7691 0.5629 0.7786 0.6087

20% augmented 0.7891 0.5927 0.8019 0.6400

50% labeled 0.7663 0.5661 0.7797 0.6175

50% augmented 0.7902 0.5998 0.8104 0.6524

100% labeled 0.7809 0.5708 0.8032 0.6461

100% augmented 0.7872 0.5860 0.8125 0.6550

4 Conclusion

In this paper, we propose a novel diffusion-based data augmentation method
for nuclei segmentation in histopathology images. The proposed unconditional
nuclei structure synthesis model can generate nuclei structures with realistic
nuclei shapes and spatial distribution. The proposed conditional histopathol-
ogy image synthesis model can generate images of close resemblance to real
histopathology images and high diversity. Great alignments between synthetic
images and corresponding nuclei structures are ensured by the special design
of the conditional diffusion model and classifier-free guidance. By augmenting
datasets with a small amount of labeled images, we achieved even better segmen-
tation results than the fully-supervised baseline on some benchmarks. Our work
points out the great potential of diffusion models in paired sample synthesis for
histopathology images.
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